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ABSTRACT: The transport of vorticity in Oldroydian viscoelastic fluid in the presence of suspended magnetic particles 

is considered. Equations governing the transport of vorticity in Oldroydian viscoelastic fluid in the presence of 

suspended magnetic particles are obtained from the equations of magnetic fluid flow proposed by Wagh and Jawandhia 

in their 1996 study on the transport of vorticity in magnetic fluid. From these equations, it follows that the transport of 

solid vorticity   is coupled with the transport of fluid vorticity. Further, it is found that due to thermo-kinetic process, 

fluid vorticity may exist in the absence of solid vorticity, but when fluid vorticity is zero, then solid vorticity is necessarily 

zero. A two-dimensional case is also studied. 
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1.  Introduction 
Magnetic fluids are those fluids in which magnetic particles are suspended in a liquid carrier. It is, thus, a 

two-phase system, consisting of solid and liquid phases. We assume that the liquid phase is non-magnetic in 

nature and magnetic force acts only on the magnetic particles; changing their velocity. Consequently, the 

dragging force acting on the carrier liquid is changed and thus the flow of carrier liquid is also influenced by 

the magnetic force. Because of the relative velocity between the solid and liquid particles, the net effect of the 

particles suspended in the fluid is extra dragging force acting on the system. Taking this force into 

consideration, Saffman [2] proposed the equations of the flow of suspension of non-magnetic particles. These 

equations were modified by Wagh [3] to describe the flow of magnetic fluid, by including the magnetic body 

force. Wagh and Jawandhia [1] have studied the transport of vorticity in a magnetic fluid. Transport and 

sedimentation of suspended particles in inertial pressure-driven flow has been considered by Yan and Koplik 

[4]. 

In all the above studies, the fluid has been considered to be as Newtonian, but many industrially important 

fluids (molten plastics, polymers, pulps and foods) exhibit a non-Newtonian fluid behaviour. Many common 

materials (paints and plastics) and more exotic ones (silicic magma, saturated soils, and the Earth’s 

lithosphere) behave as viscoelastic fluids. With the growing importance of non-Newtonian fluids in modern 

technology and industries, investigations on such fluids are desirable. Widely used theoretical models (models 

A and B, respectively) for certain classes of viscoelastic fluids have been proposed by Oldroyd [5]. An 

experimental demonstration by Toms and Strawbridge [6] has revealed that a dilute solution of methyl 

methacrylate in n-butyl acetate agrees well with the theoretical model of Oldroyd [5]. The nature of the 

instability and other factors can affect viscoelastic fluids differently than Newtonian fluids. For example, the 
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thermal instability of Maxwellian viscoelastic fluid in the presence of a uniform rotation has been considered 

by Bhatia and Steiner [7] where rotation is found to have a destabilizing effect, which is in contrast to the 

thermal instability of a Newtonian fluid where rotation has a stabilizing effect. The thermal instability of an 

Oldroydian viscoelastic fluid acted on by a uniform rotation has been studied by Sharma [8] and it was found 

that the rotation has both a destabilizing and, under certain conditions, a stabilizing effect in contrast to a 

Maxwell viscoelastic fluid, where it has a destabilizing effect. Hamabata and Namikawa [9] studied the 

propagation of thermoconvective waves in the Oldroyd fluid. Kumar et al. [10] considered the instability of 

the plane interface between two Oldroydian viscoelastic superposed fluids in the presence of uniform rotation 

and variable magnetic field in a porous medium. The problem of the onset of electro-hydrodynamic instability 

in a horizontal layer of Oldroydian viscoelastic dielectric liquid through Brinkman porous medium under the 

simultaneous action of a vertical a.c. electric field and a vertical temperature gradient is analyzed by El-Sayed 

[11]. Hoshoudy [12] has considered the quantum effects on the Rayleigh-Taylor instability of viscoelastic 

plasma model through a porous medium. Kumar and Mohan [13] have mathematically investigated the 

double-diffusive convection in an Oldroydian viscoelastic fluid under the simultaneous effects of magnetic 

field and suspended particles through porous medium. In another study, Kumar and Mohan [14] have 

considered the instability of an Oldroydian heterogeneous viscoelastic fluid in a porous medium. The 

boundary-value problem for the steady isothermal flow of an incompressible viscoelastic liquid of Oldroyd 

type in a bounded domain with a Navier type slip boundary condition has been considered by Le Roux [15]. 

El-Sayed et al. [16] have considered the effects of a vertical a.c. electric field and heat transfer on a peristaltic 

flow of an incompressible dielectric viscoelastic fluid in asymmetric flexible channel. An incompressible 

Oldroydian viscoelastic fluid layer heated and soluted from below in the presence of suspended (dust) 

particles and uniform vertical magnetic field to include the effect of Hall currents in porous medium has been 

considered by Kumar and Kumar [17]. The triply diffusive convection in an Oldroydian viscoelastic fluid is 

mathematically investigated in the absence and presence of magnetic field through porous medium by Kumar 

et al. [18].   

Keeping in mind the importance of non-Newtonian fluids in modern technology and industries, we here 

attempt to study the transport of vorticity in magnetic Oldroydian viscoelastic fluid-particle mixtures.  

 

2. Basic Assumptions and Magnetic Body Force 
Particles of magnetic material are much larger than the size of the molecules of carrier liquid. 

Accordingly, we consider the limit of a microscopic volume element in which a fluid can be assumed to be a 

continuous medium and the magnetic particles must be treated as discrete entities. Now, if we consider a cell 

of magnetic fluid containing a larger number of magnetic particles, then we must consider the microrotation of 

the cell in addition to its translations as a point mass. Thus, one has to assign average velocity dq


and the 

average angular velocity 


 to the cell. But, here as an approximation, we neglect the effect of microrotation. 

We shall also make the following assumptions: 

(i) Most of the ferrofluids are relatively poor conductors and hence free current density J


is 

negligible and hence BJ


 is assumed to be insignificant. 

(ii) The magnetic field is assumed to be curl free i.e. .0= H


 

(iii) The liquid compressibility is unimportant in many situations. Hence contribution due to magnetic 

friction can be neglected. The remaining force of magnetic field is called as magnetization force. 

(iv) All time-dependent magnetization effects in the fluid (such as hysteresis) are assumed to be 

negligible and the magnetization M


is assumed to be collinear with H


. 

From electromagnetic theory, the force per unit volume (in MKS units) on a piece of magnetized material 

of magnetization M


 (i.e. dipole moment per unit volume) in the field of magnetic intensity H


 is 

( )HM


.0 , where 0  is the free-space permeability. Using assumption (iv), we obtain 

( ) ( ) ,.. 0

0 HH
H

M
HM


=


 where MM


=  and HH


=  .                                                (1) 

But by assumption (ii), we have  
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( ) ( ) ( ) ( )HHHHHHHH


.
2

1
.

2

1
. =−=   .                                                         (2) 

Hence ( ) ( ) ..
2

1
. 0

0

0 HMHH
H

M
HM =








= 





 

The magnetic body force therefore assumes the form [Rosensweig [19]] 

.0 HMfm =                                                                                               (3) 

 

3. Derivation of Equations Governing Transport of Vorticity in Magnetic Oldroydian 

Viscoelastic Fluid 

Let 
dt

dandxqpe iiijijijij ,,,),(,,,,, 0   denote respectively the total stress tensor, the 

shear stress tensor, the rate-of-strain tensor, the viscosity, the stress relaxation time, the strain retardation time, 

the isotropic pressure, the Kroneckor delta, the velocity vector, the position vector and the convective 

derivative. Then the Oldroydian viscoelastic fluid is described by the constitutive relations 


































+




=









+=








+

+−=

,
2

1

,121

,

0

i

j

j

i

ji

jiji

jijiji

x

q

x

q
e

e
dt

d

dt

d

p





          (4) 

 

Relations of the type (4) were first studied by Oldroyd [5]. Oldroyd [5] also showed that many rheological 

equations of state; of general validity, reduce to (4) when linearized. 00 =  yields the fluid to be Maxwellian 

whereas 00 ==   gives the Newtonian viscous fluid.      

Wagh [3] modified the Saffman’s equations for flow of suspension to describe the flow of magnetic fluid 

by including the body force HM0 acting on the suspended magnetic particles. Now the equations 

expressing the flow of suspended magnetic particles and the flow of Oldroydian viscoelastic fluid in which 

magnetic particles are suspended are therefore written as 

( ) ( ),. 0 ddd

d qqKNHMgmNqq
t

q
mN




−++=







+




                                                    (5) 

( ) ( )  ,11.1 2

0 q
t

qqKNgP
t

qq
t

q

t
d
















++−++−












+=








+
















+      (6) 

where ( ) ( ) ( ) ( )txNmsrlqggwvuqP d ,,,,,;,0,0,,,,,,


−  denote, respectively, the pressure less 

the hydrostatic pressure, density, viscosity, velocity of the pure fluid, gravity force; velocity, mass and number 

density of the particles; ( ) ,6,,, == Kzyxx  being the particle radius, is the Stokes' drag coefficient 

and mN  is the mass of particles per unit volume.  

If we assume that the particle has a uniform spherical shape and that the particle velocity relative to the 

fluid is small, then in the equations of motion for the fluid, because of the presence of suspended particles, an 

additional force term appears proportional to the velocity difference between the suspended particles and the 

fluid. Since the force exerted by the fluid on the suspended particles is equal and opposite to that exerted by 

the particles on the fluid, there must be an extra force term, equal in magnitude but opposite in sign appears  in 

the equations of motion of the suspended particles. The buoyancy force on the particles is also neglected. This 

force is proportional to the quotient of   and the particle density, and an analysis for the case of free-free 
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boundary conditions shows that its small stabilizing effect is negligible. We assume that the distances between 

particles are quite large compared with their diameter, so interparticle reactions are also ignored.  

Making use of the Lagrange’s vector identities 

( ) ( ) ,
2

1
.,

2

1
. 1

22 −=−=


qqqqqqqq dddd                                                     (7) 

Equations 5 and 6 become 

( ) ( ) ,0

2

ddd

d qqKNHMqmNmNgzq
t

q
mN




−++−−=







−






              

                     (8) 

( ) ( )

)9(,1

2

1
11

2

0

2

1

q
t

qqKNqgzP
t

q
t

q

t
d


















++









−+−−−












+=








−
















+





           

where dq


=  and q


=1 are respectively the solid vorticity and fluid vorticity. 

Taking the curl of these equations and recalling that the curl of a gradient is identically equal to zero, we get 

( ) ( ),10 −+=







−



 


KNHMq
t

mN d                                                            (10) 

( ) ( ).111 11

2

01

1 −











++












+=








−
















+




KN
tt

q
tt

             (11) 

By making use of the vector identities 

( ) ( ) ( ) ( ) ( ) ,...... −=−+−=


ddddddd qqqqqqq                     (12) 

( ) ( ) ( ) ( ) ( ) ,...... 1111111 −=−+−=


qqqqqqq                         (13) 

Equations 10 and 11 become 

( ) ( ),. 10 −++=
 


KNqmNHM
Dt

D
mN d                                                           (14) 

( ) ( ),1.111 111

2

0

1 −











++












++












+=














+







KN

t
q

ttDt

D

t       

 (15) 

where  is the kinematic viscosity and ( )+



= .dq

tDt

D 
 is the convective derivative. 

In Equation 14, 

( ) ( ) ( ) .HMHMHM +=                                                                                     (16) 

Since the curl of the gradient is zero, the last term in Equation 16 is zero. Also since  

( )THMM ,= . We have 

            

.T
T

M
H

H

M
M 












+












=                                                                                            (17) 

By making use of (17), Equation 16 becomes 

( ) HT
T

M
HH

H

M
HM 












+












= .                                                                      (18) 

The first term on the right hand side of this equation is clearly zero, hence we get 

( ) HT
T

M
HM 












= .                                                                                                        (19) 

Substituting this expression in Equation 14, we get 
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( ) ( ).. 10 −++











=

 


KNqmNHT
T

M

Dt

D
mN d                                                   (20) 

Here (15) and (20) are the equations governing the transport of vorticity in magnetic Oldrodian viscoelastic 

fluid-particle mixtures. 

In Equation 20 the first term in the right hand side HT
T

M













0 describes the production of 

vorticity due to thermo-kinetic processes. The last term ( ).1 −


KN  gives the change in solid vorticity on 

account of exchange of vorticity between the liquid and solid. 

From Equations 15 and 20, it follows that the transport of solid vorticity 


 is coupled with the transport 

of fluid vorticity 1


. 

From Equation 20, we see that if solid vorticity 


 is zero, then the fluid vorticity 1


 is non-zero and it is 

given by 

.0

1 HT
T

M

KN













−=


                                                                                                (21) 

This implies that due to thermo-kinetic processes, fluid vorticity may exist in the absence of solid vorticity. 

From Equation 14 we find that if 1


 is zero, then 


 is also zero. This implies that when fluid vorticity is 

zero, then solid vorticity is necessarily zero. 

In the absence of suspended magnetic particles, N is zero and magnetization M is also zero, so Equation 

20 is identically satisfied and Equation 15 reduces to  

( ) ..111 11

2

0

1 q
ttDt

D

t
















++












+=














+ 

     

                                        (22) 

This equation is vorticity transport equation. The last term on the right hand side of Equation 22 represents the 

rate at which 1


 varies for a given particle, when the vortex lines move with the fluid (the strengths of the 

vortices remaining constant) and the rate of change of vorticity, which varies for a given particle due to stress 

relaxation time. The first term represents the rate of dissipation of vorticity through friction (resistance) and 

rate of change of vorticity due to strain retardation time.  

 

4. Two-Dimensional Case 
Here we consider the two-dimensional case: 

Let ( ) ( ) ( ) ( ) jyxqiyxqqjyxqiyxqq yxddd yx

ˆ,ˆ,,ˆ,ˆ, +=+=


  ,                                       (23) 

where components yxdd qqandqq
yx

,,  are functions of tandyx, , then 

kk zz
ˆ,ˆ

11 ==


 .                                                                                                        (24) 

In two-dimensional case, Equation 21 becomes  

( ) .1

0

zz
z

m

K

y

T

x

H

y

H

x

T

T

M

mNDt

D
−+
















−




















=

 
                                               (25) 

Similarly, Equation 16 becomes 

( ) ( ),)()(1 111

2

01

21

zzzzzz

z

t

KNKN

tDt

D

t
−




+−+




+=














+






                  

                                                                                                                                          (26) 

Because it can be easily verified that  

( ) ( ) .0.0. 1 == qandqd


                                                                                                   (27) 

The first term on the right hand side of Equation 26 is the change of fluid vorticity due to internal friction 

(resistance), the second term is the rate of change of fluid vorticity due to strain retardation time, the third 
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term is change in fluid vorticity on account of exchange of vorticity between solid and liquid and the fourth 

term rate of change in fluid vorticity on account of exchange of vorticity between solid and liquid due to stress 

relaxation time. Equation 26 does not involve explicitly the term representing change of vorticity due to 

magnetic field gradient and/or temperature gradient. But Equation 25 shows that solid vorticity 
z  depends 

on these factors. Hence, it follows that fluid vorticity is indirectly influenced by the temperature and the 

magnetic field gradient. 

In the absence of magnetic particles, N is zero and magnetization M is also zero, so Equation 25 is 

identically satisfied and Equation 26 reduces to classical equation for the transport of fluid vorticity. If we 

consider a suspension of non-magnetic particles instead of magnetic fluid, then the corresponding equation for 

the transport of vorticity may be obtained by setting M equal to zero in the equations governing the transport 

of vorticity in magnetic fluids. If the magnetization M of the magnetic particles is independent of temperature, 

then the first term in Equations 20 and 25 vanishes and so the equations governing the transport of vorticity in 

magnetic fluid become the same as those governing the transport of vorticity in non-magnetic suspensions. 

If the temperature gradient T  vanishes or if the magnetic field gradient H vanishes or if T  is 

parallel to H , then also the first term in Equations 20 and 25 vanishes. Thus, we see that in this case also 

the transport of vorticity in magnetic fluid is same as transport of vorticity in non-magnetic suspension. 
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